Iterative Hard Thresholding Methods for $l_0$ Regularized Convex Cone Programming
نویسنده
چکیده
In this paper we consider l0 regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving l0 regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the IHT method for finding an -local-optimal solution. We then propose a method for solving l0 regularized convex cone programming by applying the IHT method to its quadratic penalty relaxation and establish its iteration complexity for finding an -approximate local minimizer. Finally, we propose a variant of this method in which the associated penalty parameter is dynamically updated, and show that every accumulation point is a local minimizer of the problem.
منابع مشابه
A Fast Iterative Shrinkage-Thresholding Algorithm for Electrical Resistance Tomography
Image reconstruction in Electrical Resistance Tomography (ERT) is an ill-posed nonlinear inverse problem. Considering the influence of the sparse measurement data on the quality of the reconstructed image, the l1 regularized least-squares program (l1 regularized LSP), which can be cast as a second order cone programming problem, is introduced to solve the inverse problem in this paper. A normal...
متن کاملDual Iterative Hard Thresholding: From Non-convex Sparse Minimization to Non-smooth Concave Maximization
Iterative Hard Thresholding (IHT) is a class of projected gradient descent methods for optimizing sparsity-constrained minimization models, with the best known efficiency and scalability in practice. As far as we know, the existing IHT-style methods are designed for sparse minimization in primal form. It remains open to explore duality theory and algorithms in such a non-convex and NP-hard prob...
متن کاملAn Accelerated Iterative Hard Thresholding Method for Matrix Completion
The matrix completion problem is to reconstruct an unknown matrix with low-rank or approximately low-rank constraints from its partially known samples. Most methods to solve the rank minimization problem are relaxing it to the nuclear norm regularized least squares problem. Recently, there have been some simple and fast algorithms based on hard thresholding operator. In this paper, we propose a...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملA Gauss-Seidel Iterative Thresholding Algorithm for lq Regularized Least Squares Regression
In recent studies on sparse modeling, lq (0 < q < 1) regularized least squares regression (lqLS) has received considerable attention due to its superiorities on sparsity-inducing and bias-reduction over the convex counterparts. In this paper, we propose a Gauss-Seidel iterative thresholding algorithm (called GAITA) for solution to this problem. Different from the classical iterative thresholdin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 147 شماره
صفحات -
تاریخ انتشار 2014